User Adaptive Text Predictor for Mentally Disabled Huntington’s Patients

Author:

Gelšvartas Julius1ORCID,Simutis Rimvydas1,Maskeliūnas Rytis2

Affiliation:

1. Automation Department, Faculty of Electrical and Electronics Engineering, Kaunas University of Technology, Studentų g. 50-154, LT-51368 Kaunas, Lithuania

2. Department of Multimedia Engineering, Faculty of Informatics, Kaunas University of Technology, Studentų g. 50-414a, LT-51368 Kaunas, Lithuania

Abstract

This paper describes in detail the design of the specialized text predictor for patients with Huntington’s disease. The main aim of the specialized text predictor is to improve the text input rate by limiting the phrases that the user can type in. We show that such specialized predictor can significantly improve text input rate compared to a standard general purpose text predictor. Specialized text predictor, however, makes it more difficult for the user to express his own ideas. We further improved the text predictor by using the sematic database to extract synonym, hypernym, and hyponym terms for the words that are not present in the training data of the specialized text predictor. This data can then be used to compute reasonable predictions for words that are originally not known to the text predictor.

Funder

Agency for Science, Innovation, and Technology

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combining Technologies of AI and Fuzzy Logic System for Huntington Disease Prediction;2024 4th International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE);2024-05-14

2. Joint embedding VQA model based on dynamic word vector;PeerJ Computer Science;2021-03-03

3. Customized Neural Predictive Medical Text: A Use-Case on Caregivers;Artificial Intelligence in Medicine;2021

4. Multi-class Model MOV-OVR for Automatic Evaluation of Tremor Disorders in Huntington’s Disease;Communications in Computer and Information Science;2021

5. Unsupervised Text Feature Learning via Deep Variational Auto-encoder;Information Technology And Control;2020-09-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3