Design of Wavelet-Encoded Symbol Constellations for Cyclostationary Spectrum Sensing

Author:

Valério de Souza Pedro Thiago1ORCID,Valério de Souza Vinícius Samuel1,Felipe de Queiroz Silveira Luiz2ORCID

Affiliation:

1. Departamento de Engenharias e Tecnologia, UFERSA, Pau Dos Ferros/RN, Brazil

2. Departamento de Engenharia de Computação e Automação, UFRN, Natal/RN, Brazil

Abstract

In mobile communication systems, the signals propagate through multipath over time-varying channels, which are subject to distortion caused by fading and Doppler shifts. In order to minimize such distortions, coding techniques and transmission diversity can be employed, e.g., wavelet coding. In this work, the wavelet coding is investigated in scenarios of cognitive radio systems with dynamic spectrum access. Cognitive radio systems with dynamic spectrum access should be able to sense unoccupied frequency bands for opportunistic transmissions, as well as detect the presence of primary users when they occupy their licensed spectrum. Therefore, an essential element for the accurate operation of cognitive radio systems encoded by wavelet coding is the ability to sense the signals encoded by this technique. It is effectively demonstrated that the possibility of sensing such signals is associated with a suitable design of the signal constellation used in the modulation of the coded symbols. The constellation design of these is performed via genetic algorithms using a multiobjective optimization approach. The developed system is evaluated according to the robustness to time-varying flat fading through a bit error probability (BER) versus Eb/N0 analysis. The spectral sensing ability is also addressed employing the cyclostationary analysis. The results denote the feasibility of using wavelet coding in radio scenarios with dynamic spectrum access, with good performance in terms of BER and signal detection rates.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3