Health Assessment of High-Speed Train Running Gear System under Complex Working Conditions Based on Data-Driven Model

Author:

Cheng Chao123ORCID,Liu Ming1ORCID,Zhang Bangcheng4ORCID,Yin Xiaojing4,Fu Caixin2,Teng Wanxiu2

Affiliation:

1. School of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China

2. National Engineering Laboratory, CRRC Changchun Railway Vehicles Co., Ltd., Changchun 130062, China

3. Department of Automation, Tsinghua University, Beijing 100084, China

4. School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China

Abstract

It is very important for the normal operation of high-speed trains to assess the health status of the running gear system. In actual working conditions, many unknown interferences and random noises occur during the monitoring process, which cause difficulties in providing an accurate health status assessment of the running gear system. In this paper, a new data-driven model based on a slow feature analysis-support tensor machine (SFA-STM) is proposed to solve the problem of unknown interference and random noise by removing the slow feature with the fastest instantaneous change. First, the relationship between various statuses of the running gear system is analyzed carefully. To remove the random noise and unknown interferences in the running gear systems under complex working conditions and to extract more accurate data features, the SFA method is used to extract the slowest feature to reflect the general trend of system changes in data monitoring of running gear systems of high-speed trains. Second, slowness data were constructed in a tensor form to achieve an accurate health status assessment using the STM. Finally, actual monitoring data from a running gear system from a high-speed train was used as an example to verify the effectiveness and accuracy of the model, and it was compared with traditional models. The maximum sum of squared resist (SSR) value was reduced by 16 points, indicating that the SFA-STM method has the higher assessment accuracy.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3