Improved Landmark Dynamic Prediction Model to Assess Cardiovascular Disease Risk in On-Treatment Blood Pressure Patients: A Simulation Study and Post Hoc Analysis on SPRINT Data

Author:

Sayadi Mehrab12ORCID,Zare Najaf3ORCID,Attar Armin4,Ayatollahi Seyyed Mohammad Taghi2ORCID

Affiliation:

1. Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

2. Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

3. Department of Biostatistics, Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

4. Department of Cardiovascular Medicine, TAHA Clinical Trial Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Landmark model (LM) is a dynamic prediction model that uses a longitudinal biomarker in time-to-event data to make prognosis prediction. This study was designed to improve this model and to apply it to assess the cardiovascular risk in on-treatment blood pressure patients. A frailty parameter was used in LM, landmark frailty model (LFM), to account the frailty of the patients and measure the correlation between different landmarks. The proposed model was compared with LM in different scenarios respecting data missing status, sample size (100, 200, and 400), landmarks (6, 12, 24, and 48), and failure percentage (30, 50, and 100%). Bias of parameter estimation and mean square error as well as deviance statistic between models were compared. Additionally, discrimination and calibration capability as the goodness of fit of the model were evaluated using dynamic concordance index (DCI), dynamic prediction error (DPE), and dynamic relative prediction error (DRPE). The proposed model was performed on blood pressure data, obtained from systolic blood pressure intervention trial (SPRINT), in order to calculate the cardiovascular risk. Dynpred, coxme, and coxphw packages in the R.3.4.3 software were used. It was proved that our proposed model, LFM, had a better performance than LM. Parameter estimation in LFM was closer to true values in comparison to that in LM. Deviance statistic showed that there was a statistically significant difference between the two models. In the landmark numbers 6, 12, and 24, the LFM had a higher DCI over time and the three landmarks showed better performance in discrimination. Both DPE and DRPE in LFM were lower in comparison to those in LM over time. It was indicated that LFM had better calibration in comparison to its peer. Moreover, real data showed that the structure of prognostic process was predicted better in LFM than in LM. Accordingly, it is recommended to use the LFM model for assessing cardiovascular risk due to its better performance.

Funder

Shiraz University of Medical Sciences

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3