Protection against UVB-Induced Photoaging by Nypa fruticans via Inhibition of MAPK/AP-1/MMP-1 Signaling

Author:

Choi Hee-Jeong1,Alam Md Badrul12,Baek Mi-Eun1,Kwon Yoon-Gyung1,Lim Ji-Young1,Lee Sang-Han123ORCID

Affiliation:

1. Department of Food Science And Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea

2. Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea

3. knu BnC, Daegu 41566, Republic of Korea

Abstract

Ultraviolet B (UVB) irradiation is major causative factor in skin aging. The aim of the present study was to investigate the protective effect of a 50% ethanol extract from Nypa fruticans (NF50E) against UVB-induced skin aging. The results indicated that NF50E exerted potent antioxidant activity (IC50 = 17.55 ± 1.63 and 10.78 ± 0.63 μg/mL for DPPH and ABTS-radical scavenging activity, respectively) in a dose-dependent manner. High-performance liquid chromatography revealed that pengxianencin A, protocatechuic acid, catechin, chlorogenic acid, epicatechin, and kaempferol were components of the extract. In addition, the extract exhibited elastase inhibitory activity (IC50 = 17.96 ± 0.39 μg/mL). NF50E protected against UVB-induced HaCaT cell death and strongly suppressed UVB-stimulated cellular reactive oxygen species generation without cellular toxicity. Moreover, topical application of NF50E mitigated UVB-induced photoaging lesions including skin erythema and skin thickness in BALB/C mice. NF50E treatment inhibited UVB-induced collagen degradation as well as MMP-1 and IL-1β expressions and significantly stimulated SIRT1 expression. Furthermore, the extract treatment markedly suppressed the activation of NF-κB and AP-1 (p-c-Jun) by deactivating the p38 and JNK proteins. Taken together, current data suggest that NF50E exhibits potent antioxidant potential and protection against photoaging by attenuating MMP-1 activity and collagen degradation possibly through the downregulation of MAPK/NF-κB/AP-1 signaling and SIRT1 activation.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3