Affiliation:
1. Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036 Anhui, China
2. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
3. Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, USA
Abstract
Certain nano-scale metal oxides exhibiting the intrinsic enzyme-like reactivity had been used for environment monitoring. Herein, we evaluated the oxidase-mimicking activity of environmentally relevant nano-MnO2 and its sensitivity to the presence of metal ions, and particularly, the use of MnO2 nanozyme to potentially detect Cu2+, Zn2+, Mn2+, and Fe2+ in water. The results indicated the oxidase-like activity of nano-MnO2 at acidic pH-driven oxidation of 2,6-dimethoxyphenol (2,6-DMP) via a single-electron transfer process, leading to the formation of a yellow product. Notably, the presence of Cu2+ and Mn2+ heightened the oxidase-mimicking activity of nano-MnO2 at 25°C and pH 3.8, showing that Cu2+ and Mn2+ could modify the reactive sites of nano-MnO2 surface to ameliorate its catalytic activity, while the activity of MnO2 nanozyme in systems with Zn2+ and Fe2+ was impeded probably because of the strong affinity of Zn2+ and Fe2+ toward nano-MnO2 surface. Based on these effects, we designed a procedure to use MnO2 nanozyme to, respectively, detect Cu2+, Zn2+, Mn2+, and Fe2+ in the real water samples. MnO2 nanozyme-based detecting systems achieved high accuracy (relative errors: 2.2–26.1%) and recovery (93.0–124.0%) for detection of the four metal ions, respectively. Such cost-effective detecting systems may provide a potential application for quantitative determination of metal ions in real water environmental samples.
Funder
National Natural Science Foundation of China
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献