Numerical Simulation of Bubble Coalescence and Break-Up in Multinozzle Jet Ejector

Author:

Patel Dhanesh1,Chaudhari Ashvinkumar2,Laari Arto3,Heiliö Matti4,Hämäläinen Jari2,Agrawal Kishorilal5

Affiliation:

1. Centre for Industrial Mathematics and Department of Applied Mathematics, Faculty of Technology and Engineering, The M. S. University of Baroda, Vadodara, Gujarat 390001, India

2. Centre of Computational Engineering and Integrated Design (CEID), Lappeenranta University of Technology, P.O. Box 20, 53851 Lappeenranta, Finland

3. Department of Chemistry, Lappeenranta University of Technology, P.O. Box 20, 53851 Lappeenranta, Finland

4. Department of Mathematics and Physics, Lappeenranta University of Technology, P.O. Box 20, 53851 Lappeenranta, Finland

5. Department of Chemical Engineering, Faculty of Technology and Engineering, The M. S. University of Baroda, Vadodara, Gujarat 390001, India

Abstract

Designing the jet ejector optimally is a challenging task and has a great impact on industrial applications. Three different sets of nozzles (namely, 1, 3, and 5) inside the jet ejector are compared in this study by using numerical simulations. More precisely, dynamics of bubble coalescence and breakup in the multinozzle jet ejectors are studied by means of Computational Fluid Dynamics (CFD). The population balance approach is used for the gas phase such that different bubble size groups are included in CFD and the number densities of each of them are predicted in CFD simulations. Here, commercial CFD softwareANSYS Fluent 14.0is used. The realizablek-εturbulence model is used in CFD code in three-dimensional computational domains. It is clear that Reynolds-Averaged Navier-Stokes (RANS) models have their limitations, but on the other hand, turbulence modeling is not the key issue in this study and we can assume that the RANS models can predict turbulence of the carrying phase accurately enough. In order to validate our numerical predictions, results of one, three, and five nozzles are compared to laboratory experiments data for Cl2-NaOH system. Predicted gas volume fractions, bubble size distributions, and resulting number densities of the different bubble size groups as well as the interfacial area concentrations are in good agreement with experimental results.

Funder

Lappeenranta University of Technology

Publisher

Hindawi Limited

Subject

Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3