A Lead Field Two-Domain Model for Longitudinal Neural Tracts—Analytical Framework and Implications for Signal Bandwidth

Author:

Fischer G.1ORCID,Kofler M.2ORCID,Handler M.1ORCID,Baumgarten D.13

Affiliation:

1. Institute of Electrical and Biomedical Engineering, UMIT-Private University for Health Sciences, Medical Informatics and Technology, Eduard-Wallnoefer-Zentrum 1, 6060 Hall in Tirol, Austria

2. Department of Neurology, Hochzirl Hospital, Zirl, Austria

3. Institute of Biomedical Engineering and Informatics, Technische Universitaet Ilmenau, Ilmenau, Germany

Abstract

Somatosensory evoked potentials are a well-established tool for assessing volley conduction in afferent neural pathways. However, from a clinical perspective, recording of spinal signals is still a demanding task due to the low amplitudes compared to relevant noise sources. Computer modeling is a powerful tool for gaining insight into signal genesis and, thus, for promoting future innovations in signal extraction. However, due to the complex structure of neural pathways, modeling is computationally demanding. We present a theoretical framework which allows computing the electric potential generated by a single axon in a body surface lead by the convolution of the neural lead field function with a propagating action potential term. The signal generated by a large cohort of axons was obtained by convoluting a single axonal signal with the statistical distribution of temporal dispersion of individual axonal signals. For establishing the framework, analysis was based on an analytical model. Our approach was further adopted for a numerical computation of body surface neuropotentials employing the lead field theory. Double convolution allowed straightforward analysis in the frequency domain. The highest frequency components occurred at the cellular membrane. A bandpass type spectral shape and a peak frequency of 1800 Hz was observed. The volume conductor transmitting the signal to the recording lead acted as an additional bandpass reducing the axonal peak frequency from 200 Hz to 500 Hz. The superposition of temporally dispersed axonal signals acted as an additional low-pass filter further reducing the compound action potential peak frequency from 90 Hz to 170 Hz. Our results suggest that the bandwidth of spinal evoked potentials might be narrower than the bandwidth requested by current clinical guidelines. The present findings will allow the optimization of noise suppression. Furthermore, our theoretical framework allows the adaptation in numerical methods and application in anatomically realistic geometries in future studies.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3