Matching Cybersecurity Ontologies on Internet of Everything through Coevolutionary Multiobjective Evolutionary Algorithm

Author:

Xue Xingsi1ORCID,Tan Wenbin2

Affiliation:

1. Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, Fuzhou, Fujian, China

2. School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China

Abstract

Since Internet of Everything (IoE) makes all the connections that come online more relevant and valuable, they are subject to numerous security and privacy concerns. Cybersecurity ontology is a shared knowledge model for tackling the security information heterogeneity issue on IoE, which has been widely used in the IoE domain. However, the existing CSOs are developed and maintained independently, yielding the CSO heterogeneity problem. To address this issue, we need to use the similarity measure (SM) to calculate two entities’ similarity value in two CSOs and, on this basis, determine the entity correspondences, i.e., CSO alignment. Usually, it is necessary to integrate various SMs to enhance the result’s correctness, but how to combine and tune these SMs to improve the alignment’s quality is still a challenge. To face this challenge, this work first models CSO matching problem as a Constrained Multiobjective Optimization Problem (CMOOP) and then proposes a Coevolutionary Multiobjective Evolutionary Algorithm (CE-MOEA) to effectively address it. In particular, CE-MOEA uses the multiobjective evolutionary paradigm to avoid the solutions’ bias improvement and introduces the coevolutionary mechanism to trade off Pareto Front’s (PF’s) diversity and convergence. The experiment uses Ontology Alignment Evaluation Initiative’s (OAEI’s) bibliographic track and conference track and five real CSO matching tasks to test CE-MOEA’s performance. Comparisons between OAEI’s participants and EA- and MOEA-based matching techniques show that CE-MOEA is able to effectively address various heterogeneous ontology matching problems and determine high-quality CSO alignments.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3