Basic Fibroblast Growth Factor Fused with Tandem Collagen-Binding Domains from Clostridium histolyticum Collagenase ColG Increases Bone Formation

Author:

Sekiguchi Hiroyuki1,Uchida Kentaro1ORCID,Matsushita Osamu2,Inoue Gen1ORCID,Nishi Nozomu3,Masuda Ryo4,Hamamoto Nana5,Koide Takaki4,Shoji Shintaro1,Takaso Masashi1

Affiliation:

1. Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, Japan

2. Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Kita-ku Shikata-cho, Okayama, Japan

3. Life Science Research Center, Kagawa University, 1750-1 Kita-gun Miki-cho, Kagawa, Japan

4. Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, Japan

5. Okayama University Medical School, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan

Abstract

Basic fibroblast growth factor 2 (bFGF) accelerates bone formation during fracture healing. Because the efficacy of bFGF decreases rapidly following its diffusion from fracture sites, however, repeated dosing is required to ensure a sustained therapeutic effect. We previously developed a fusion protein comprising bFGF, a polycystic kidney disease domain (PKD; s2b), and collagen-binding domain (CBD; s3) sourced from the Clostridium histolyticum class II collagenase, ColH, and reported that the combination of this fusion protein with a collagen-like peptide, poly(Pro-Hyp-Gly)10, induced mesenchymal cell proliferation and callus formation at fracture sites. In addition, C. histolyticum produces class I collagenase (ColG) with tandem CBDs (s3a and s3b) at the C-terminus. We therefore hypothesized that a bFGF fusion protein containing ColG-derived tandem CBDs (s3a and s3b) would show enhanced collagen-binding activity, leading to improved bone formation. Here, we examined the binding affinity of four collagen anchors derived from the two clostridial collagenases to H-Gly-Pro-Arg-Gly-(Pro-Hyp-Gly)12-NH2, a collagenous peptide, by surface plasmon resonance and found that tandem CBDs (s3a-s3b) have the highest affinity for the collagenous peptide. We also constructed four fusion proteins consisting of bFGF and s3 (bFGF-s3), s2b-s3b (bFGF-s2b-s3), s3b (bFGF-s3b), and s3a-s3b (bFGF-s3a-s3b) and compared their biological activities to those of a previous fusion construct (bFGF-s2b-s3) using a cell proliferation assay in vitro and a mouse femoral fracture model in vivo. Among these CB-bFGFs, bFGF-s3a-s3b showed the highest capacity to induce mesenchymal cell proliferation and callus formation in the mice fracture model. The poly(Pro-Hyp-Gly)10/bFGF-s3a-s3b construct may therefore have the potential to promote bone formation in clinical settings.

Funder

Japan Society for the Promotion of Science

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3