A Multiobjective Optimization for Train Routing at the High-Speed Railway Station Based on Tabu Search Algorithm

Author:

Feng Ziyan1ORCID,Cao Chengxuan1ORCID,Liu Yutong1,Zhou Yaling1ORCID

Affiliation:

1. State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China

Abstract

This paper focuses on the train routing problem at a high-speed railway station to improve the railway station capacity and operational efficiency. We first describe a node-based railway network by defining the turnout node and the arrival-departure line node for the mathematical formulation. Both considering potential collisions of trains and convenience for passengers’ transfer in the station, the train routing problem at a high-speed railway station is formulated as a multiobjective mixed integer nonlinear programming model, which aims to minimize trains’ departure time deviations and total occupation time of all tracks and keep the most balanced utilization of arrival-departure lines. Since massive decision variables for the large-scale real-life train routing problem exist, a fast heuristic algorithm is proposed based on the tabu search to solve it. Two sets of numerical experiments are implemented to demonstrate the rationality and effectiveness of proposed method: the small-scale case confirms the accuracy of the algorithm; the resulting heuristic proved able to obtain excellent solution quality within 254 seconds of computing time on a standard personal computer for the large-scale station involving up to 17 arrival-departure lines and 46 trains.

Funder

Beijing Jiaotong University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3