Periventricular Microglia Polarization and Morphological Changes Accompany NLRP3 Inflammasome-Mediated Neuroinflammation after Hypoxic–Ischemic White Matter Damage in Premature Rats

Author:

Yang Liu12,Zhang Yajun3,Yu Xuefei1,Li Danni1,Liu Na1,Xue Xindong1,Fu Jianhua1ORCID

Affiliation:

1. Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China

2. Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian 116021, Liaoning, China

3. Department of Anesthesiology, Dalian Municipal Maternal and Child Health Care Hospital, Dalian 116021, Liaoning, China

Abstract

White matter damage (WMD) is a primary cause of cerebral palsy and cognitive impairment in preterm infants, and no effective treatments are available. Microglia are a major component of the innate immune system. When activated, they form typical pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes and regulate myelin development and synapse formation. Therefore, they may play a pivotal role in hypoxic–ischemic (HI) WMD. Herein, we investigated neural inflammation and long-term microglia phenotypic polarization in a neonatal rat model of hypoxia-ischemia-induced WMD and elucidated the underlying pathophysiological processes. We exposed 3-day-old (P3) Sprague−Dawley rats to hypoxia (8% oxygen) for 2.5 hr after unilateral common carotid artery ligation. The activation of NLRP3 inflammatory bodies, microglia M1/M2 polarization, myelination, and synaptic development in our model were monitored 7, 14, and 21 days after birth. In addition, the Morris water maze test was performed on postnatal Day 28. We confirmed myelination disturbance in the periventricular white matter, abnormal synaptic development, and behavioral changes in the periventricular area during the development of HI WMD. In addition, we found an association between the occurrence and development of HI WMD and activation of the NLRP3 inflammasome, microglial M1/M2 polarization, and the release of inflammatory factors. NLRP3 inhibition can play an anti-inflammatory role by inhibiting the differentiation of microglia into the M1 phenotype, thereby improving myelination and synapse formation. In conclusion, microglia are key mediators of the inflammatory response and exhibit continuous phenotypic polarization 7–21 days after HI-induced WMD. This finding can potentially lead to a new treatment regimen targeting the phenotypic polarization of microglia early after HI-induced brain injury.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3