Effectiveness of Inexpensive Cloth Facemasks and Their Amendments to Reduce Ambient Particulate Exposures: A Case of Kathmandu, Nepal

Author:

Neupane Prasidha R.1ORCID,Bajracharya Iswor2ORCID,Khatry Sunil B.3ORCID

Affiliation:

1. Khwopa College (Tribhuvan University), Bhaktapur, Nepal

2. Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal

3. Nepal Environmental Scientific Services (P) Ltd (NESS), Baneshwor, Nepal

Abstract

Inexpensive cloth masks are widely used to reduce particulate exposures, but their use became ubiquitous after the outbreak of COVID-19. A custom experimental setup (semiactive at 5.1 m/s airflow rate) was fabricated to examine the efficiency of different types of commercial facemasks collected randomly from street vendors. The sample (N = 27) including (n = 16) cloth masks (CMs), (n = 7) surgical masks (SMs), and (n = 4) N95 filtering facepiece respirators (FFRs), of which SMs and N95 FFRs taken as a standard for efficiency comparison were all tested against ambient aerosols (PM2.5 and PM10 μg/m3). The prototype cloth masks (PTCMs) (N = 5) design was tailored, and their performance was assessed and compared with that of standard commercial masks. The filtering efficiency tested against ambient coarse particulates (PM10) ranged from (5% to 34%) for CMs with an average of 16%, (37% to 46%) for SMs with an average of 42%, (59% to 72%) for PTCMs with an average of 65%, and (70% to 75%) for N95 FFRs with an average of 71%, whereas against fine particulates (PM2.5), efficacy ranged from (4% to 29%) for CMs with an average of 13%, (34% to 44%) for SMs with an average of 39%, (53% to 68%) for PTCMs with an average of 60%, and (68% to 73%) for N95 FFRs with an average of 70%, respectively. The efficiency followed the order N95 FFRs > PTCMs > SMs > CMs showing poor exposure reduction potential in CMs and high exposure reduction potential in N95 FFRs and PTCMs. Amendment in existing CMs using eco-friendly cotton fabric with better facial adherence can protect human health from exposure to fine particulates <2.5 μm and can reduce the risk of micro-plastic pollution caused by polypropylene (PP) facemasks.

Funder

Nepal Academy of Science and Technology

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3