Third-Body Perturbation Using a Single Averaged Model: Application in Nonsingular Variables

Author:

Solórzano Carlos Renato Huaura,Almeida Prado Antonio Fernando Bertachini de

Abstract

The Lagrange's planetary equations written in terms of the classical orbital elements have the disadvantage of singularities in eccentricity and inclination. These singularities are due to the mathematical model used and do not have physical reasons. In this paper, we studied the third-body perturbation using a single averaged model in nonsingular variables. The goal is to develop a semianalytical study of the perturbation caused in a spacecraft by a third body using a single averaged model to eliminate short-period terms caused by the motion of the spacecraft. This is valid if no resonance occurs with the moon or the sun. Several plots show the time histories of the Keplerian elements of equatorial and circular orbits, which are the situations with singularities. In this paper, the expansions are limited only to second order in eccentricity and for the ratio of the semimajor axis of the perturbing and perturbed bodies and to the fourth order for the inclination.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3