A Comprehensive Examination of the Protocols, Technologies, and Safety Requirements for Electric Vehicle Charging Infrastructure

Author:

Bommana Babji1,Kumar J. S. V. Siva1,Nuvvula Ramakrishna S. S.1ORCID,Kumar Polamarasetty P.1,Khan Baseem2ORCID,Muthusamy Suresh3ORCID,Inapakurthi Ravikiran4

Affiliation:

1. Department of Electrical and Electronics, GMR Institute of Technology, Rajam, Andhra Pradesh 532127, India

2. Department of Electrical and Computer Engineering, Hawassa University, Hawassa, Ethiopia

3. Department of Electronics and Communication Engineering, Kongu Engineering College (Autonomous), Perundurai, Erode, Tamil Nadu, India

4. Electrical and Electronics Engineering, Raghu Engineering College, Dakamarri, Visakhapatnam 531162, India

Abstract

Electric vehicles (EVs) have various advantages over traditional internal combustion engines (ICEs), including reduced carbon emissions, greater energy efficiency, and a lessened reliance on petroleum supplies. The use of EV charging infrastructure and power levels are reviewed in this article. Battery performance is affected by the design of the battery as well as the charger parameters and infrastructure. In this paper, the off-board and on-board charging methods with bidirectional and unidirectional power flow are compared. Hardware restrictions and connectivity concerns are eased with a unidirectional charger. The bidirectional charger enables both battery energy injection back into the grid and the vehicle. Power is constrained by the onboard charger due to its size, weight, and price. Both conductive and inductive onboard chargers are viable. For high current rates, which are not supported by EVs, it is feasible to develop an off-board charger. The time required for charging, amount of power, cost, equipment, location, infrastructure configurations, and other parameters are provided, compared, and reviewed for different power level chargers, such as level-1 (slow), level-2 (semi-fast), and level-3 (fast).

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3