Solvability of initial boundary value problems for equations describing motions of linear viscoelastic fluids

Author:

Karazeeva N. A.1

Affiliation:

1. Petersburg Department, V. A. Steklov Institute of Mathematics, 27 Fontanka, St., Petersburg 191011, Russia

Abstract

The nonlinear parabolic equations describing motion of incompressible media are investigated. The rheological equations of most general type are considered. The deviator of the stress tensor is expressed as a nonlinear continuous positive definite operator applied to the rate of strain tensor. The global-in-time estimate of solution of initial boundary value problem is obtained. This estimate is valid for systems of equations of any non-Newtonian fluid. Solvability of initial boundary value problems for such equations is proved under some additional hypothesis. The application of this theory makes it possible to prove the existence of global-in-time solutions of two-dimensional initial boundary value problems for generalized linear viscoelastic liquids, that is, for liquids with linear integral rheological equation, and for third-grade liquids.

Publisher

Hindawi Limited

Subject

Applied Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3