Current Progress of Mitochondrial Quality Control Pathways Underlying the Pathogenesis of Parkinson’s Disease

Author:

Jiang Xue1,Jin Tao1ORCID,Zhang Haining1,Miao Jing1,Zhao Xiuzhen1,Su Yana1,Zhang Ying1ORCID

Affiliation:

1. Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Xinmin Street No. 71, Changchun 130000, China

Abstract

Parkinson’s disease (PD), clinically characterized by motor and nonmotor symptoms, is a common progressive and multisystem neurodegenerative disorder, which is caused by both genetic and environmental risk factors. The main pathological features of PD are the loss of dopaminergic (DA) neurons and the accumulation of alpha-synuclein (α-syn) in the residual DA neurons in the substantia nigra pars compacta (SNpc). In recent years, substantial progress has been made in discovering the genetic factors of PD. In particular, a total of 19 PD-causing genes have been unraveled, among which some members have been regarded to be related to mitochondrial dysfunction. Mitochondria are key regulators of cellular metabolic activity and are critical for many important cellular processes including energy metabolism and even cell death. Their normal function is basically maintained by the mitochondrial quality control (MQC) mechanism. Accordingly, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a kind of neurotoxin, exerts its neurotoxic effects at least partially by producing its toxic metabolite, namely, 1-methyl-4-phenylpyridine (MPP+), which in turn causes mitochondrial dysfunction by inhibiting complex I and mimicking the key features of PD pathogenesis. This review focused on three main aspects of the MQC signaling pathways, that is, mitochondrial biogenesis, mitochondrial dynamics, and mitochondrial autophagy; hence, it demonstrates in detail how genetic and environmental factors result in PD pathogenesis by interfering with MQC pathways, thereby hopefully contributing to the discovery of novel potential therapeutic targets for PD.

Funder

Health and Wellness Technology Innovation Project of Jilin Province

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3