Self-Sustained Oscillation of a Photothermal-Responsive Pendulum under Steady Illumination

Author:

Ge Dali12ORCID,Xu Peibao1ORCID,Li Kai1ORCID

Affiliation:

1. Department of Civil Engineering, Anhui Jianzhu University, Hefei 230601, Anhui, China

2. Institute of Advanced Technology, University of Science and Technology of China, Hefei 230001, Anhui, China

Abstract

Self-sustained oscillation has the advantages of harvesting energy from the environment and self-control, and thus, the development of new self-oscillating systems can greatly expand its applications in active machines. In this paper, based on conventional photothermal shrinkable material or photothermal expansive material, a simple pendulum is proposed. The light-powered self-sustained oscillation of the simple pendulum is theoretically studied by establishing a dynamic model of the photothermal-responsive pendulum. The results show that there are two motion modes of the simple pendulum, which are the static mode and the oscillation mode. Based on the photothermal-responsive model, this paper elucidates the mechanism of the self-excited oscillation. The condition for triggering self-excited oscillation is further studied. In addition, the influence of the system parameters on the amplitude and frequency is also obtained. This study may have potential applications in energy harvesting, signal monitoring, and soft machines.

Funder

Outstanding Talents Cultivation Project of Universities in Anhui

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3