Influence Maximization Algorithm Based on Reverse Reachable Set

Author:

Sun Gengxin1ORCID,Chen Chih-Cheng23ORCID

Affiliation:

1. School of Data Science and Software Engineering, Qingdao University, Qingdao 266071, China

2. Department of Automatic Control Engineering, Feng Chia University, Taichung 40724, Taiwan

3. Department of Aeronautical Engineering, Chaoyang University of Technology, Taiwan 413310, Taiwan

Abstract

Most of the existing influence maximization algorithms are not suitable for large-scale social networks due to their high time complexity or limited influence propagation range. Therefore, a D-RIS (dynamic-reverse reachable set) influence maximization algorithm is proposed based on the independent cascade model and combined with the reverse reachable set sampling. Under the premise that the influence propagation function satisfies monotonicity and submodularity, the D-RIS algorithm uses an automatic debugging method to determine the critical value of the number of reverse reachable sets, which not only obtains a better influence propagation range but also greatly reduces the time complexity. The experimental results on the two real datasets of Slashdot and Epinions show that D-RIS algorithm is close to the CELF (cost-effective lazy-forward) algorithm and higher than RIS algorithm, HighDegree algorithm, LIR algorithm, and pBmH (population-based metaheuristics) algorithm in influence propagation range. At the same time, it is significantly better than the CELF algorithm and RIS algorithm in running time, which indicates that D-RIS algorithm is more suitable for large-scale social network.

Funder

Natural Science Foundation of Shandong Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference20 articles.

1. Mining knowledge-sharing sites for viral marketing

2. Mining the network value of customers

3. Maximizing the spread of influence through a social network

4. Using complex systems analysis to advance marketing theory development: modeling heterogeneity effects on new product growth through stochastic cellular automata;J. Goldenberg;Academy of Marketing Science Review,2011

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3