Molecular Mechanism of Xixin-Ganjiang Herb Pair Treating Chronic Obstructive Pulmonary Disease-Integrated Network Pharmacology and Molecular Docking

Author:

Huang Ping1ORCID,Huang Tao2,Li Deshun1,Han Lintao3,Zhou Zhenxiang1,Huang Fang1,Li Jingjing1,Wu Jiajia1,Ye Yan3,Wang Qiong1ORCID,Duan Bailu1ORCID

Affiliation:

1. College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China

2. Wuhan Red Cross Hospital, Wuhan 430065, China

3. Pharmacy School, Hubei University of Chinese Medicine, Wuhan 430065, China

Abstract

Background. Chronic obstructive pulmonary disease (COPD) is characterized by high morbidity, disability, and mortality, which seriously threatens human life and health. Xixin and Ganjiang are classic herb pairs of Zhongjing Zhang, which are often used to treat COPD in China. However, the substance basis and mechanism of action of Xixin-Ganjiang herb pair (XGHP) in the treatment of COPD remain unclear. Methods. On the website of TCMSP and the DrugBank, effective compounds and targets of XGHP were found. COPD targets were obtained from GeneCards, DisGeNET, and GEO gene chips. Intersecting these databases resulted in a library of drug targets for COPD. Then, intersection targets were used for protein-protein interaction (PPI) and pathway enrichment analysis. Finally, the binding activity between compounds and core genes was evaluated by molecular docking to verify the expression level of PTGS2 and PPARG in rats. Results. Twelve effective compounds and 104 core genes were found in the intersection library, and kaempferol, sesamin, β-sitosterol, PTGS2, and PPARG were particularly prominent in the network analysis. A total of 113 pathways were obtained and enrichment of the TNF signaling pathway, IL-17 signaling pathway, and C-type lectin receptor signaling pathway was particularly obvious. Molecular docking indicated that kaempferol, sesamin, and β-sitosterol were closely related to PTGS2 and PPARG and were superior to aminophylline. Key compounds in XGHP could restrict the expression of PTGS2 in the lung tissues of COPD rats and promote the expression of PPARG. Conclusion. Inhibition of the expression of inflammatory factor PTGS2 and promotion of the expression of PPARG may be an effective target of XGHP in the treatment of COPD.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3