Study on the Performance and Adhesion Behavior of Ultrathin Wearing Course Using Calcined Bauxite as Aggregate

Author:

Sheng Yanping1ORCID,Wang Runzhi1,Jia Haichuan1ORCID,Qiu Wenli2,Feng Lei2,Zhang Shaobo2,Cui Shian1,Zhao Xiaorui1

Affiliation:

1. School of Material Science and Engineering, Chang’an University, Xi’an 710064, China

2. Hebei Xiong’an Jingde Expressway Co., Ltd., Xiong’an, Hebei 071700, China

Abstract

An ultrathin wearing course is an effective maintenance treatment for prolonging the service life of asphalt pavements, which have been widely used in the field of pavement construction and road maintenance. However, the repeated vehicle load and wear results in a decreased durability of ultrathin wear course cover pavement. Hence, the gradation of ultrathin wear course was designed using calcined bauxite in this study, and the water stability, low-temperature properties, resistance to permanent deformation, and salt erosion were investigated through a laboratory test. Results indicated that the addition of a nonammonia antistripping agent significantly improves the water stability of the asphalt mixture with calcined bauxite and its ability to resist salt erosion as well as improve its low-temperature deformation ability. At the same time, polyphosphoric acid improves the adhesion between asphalt and calcined bauxite aggregate and the high-temperature performance of asphalt mixture but has limited improvement in water stability and resistance to salt erosion. This research is conducive to the widespread use of calcined bauxite aggregates in road pavements and is of great significance for improving the durability of ultrathin wear course asphalt pavements.

Funder

Science and technology project of Hebei Department

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling of two-stroke aviation piston engines for control applications;Advances in Mechanical Engineering;2023-02

2. Design of interactive multimedia teaching system based on collaborative filtering;International Conference on Electronic Information Engineering, Big Data, and Computer Technology (EIBDCT 2022);2022-05-06

3. Road Performance and Ice-Melting Characteristics of Steel Wool Asphalt Mixture;Advances in Civil Engineering;2022-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3