Affiliation:
1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
2. Beijing Institute of Remote Sensing Equipment, Beijing 100854, China
Abstract
The compressive array method, where a compression matrix is designed to reduce the dimension of the received signal vector, is an effective solution to obtain high estimation performance with low system complexity. While sparse arrays are often used to obtain higher degrees of freedom (DOFs), in this paper, an orthogonal dipole sparse array structure exploiting compressive measurements is proposed to estimate the direction of arrival (DOA) and polarization signal parameters jointly. Based on the proposed structure, we also propose an estimation algorithm using the compressed sensing (CS) method, where the DOAs are accurately estimated by the CS algorithm and the polarization parameters are obtained via the least-square method exploiting the previously estimated DOAs. Furthermore, the performance of the estimation of DOA and polarization parameters is explicitly discussed through the Cramér-Rao bound (CRB). The CRB expression for elevation angle and auxiliary polarization angle is derived to reveal the limit of estimation performance mathematically. The difference between the results given in this paper and the CRB results of other polarized reception structures is mainly due to the use of the compression matrix. Simulation results verify that, compared with the uncompressed structure, the proposed structure can achieve higher estimated performance with a given number of channels.
Funder
Key Laboratory of Advanced Marine Communication and Information Technology
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献