Consensus Patterns of a Set of Time Series via a Wavelet-Based Temporal Localization: Emphasizing the Utility over Point-Wise Averaging and Averaging under Dynamic Time Warping

Author:

Waduge Chekhaprabha Priyadarshanee1,Ganegoda Naleen Chaminda2ORCID,Wickramarachchi Darshana Chitraka3,Lokupitiya Ravindra Shanthakumar3

Affiliation:

1. Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda, Sri Lanka

2. Department of Mathematics, University of Sri Jayewardenepura, Nugegoda, Sri Lanka

3. Department of Statistics, University of Sri Jayewardenepura, Nugegoda, Sri Lanka

Abstract

Summarizing or averaging a sequential data set (i.e., a set of time series) can be comprehensively approached as a result of sophisticated computational tools. Averaging under Dynamic Time Warping (DTW) is one such tool that captures consensus patterns. DTW acts as a similarity measure between time series, and subsequently, an averaging method must be executed upon the behaviour of DTW. However, averaging under DTW somewhat neglects temporal aspect since it is on the search of similar appearances rather than stagnating on corresponding time-points. On the contrary, the mean series carrying point-wise averages provides only a weak consensus pattern as it may over-smooth important temporal variations. As a compromise, a pool of consensus series termed Ultimate Tamed Series (UTS) is studied here that adheres to temporal decomposition supported by the discrete Haar wavelet. We claim that UTS summarizes localized patterns, which would not be reachable via the series under DTW or the mean series. Neighbourhood of localization can be altered as a user can customize different levels of decomposition. In validation, comparisons are carried out with the series under DTW and the mean series via Euclidean distance and the distance resulted by DTW itself. Two sequential data sets are selected for this purpose from a standard repository.

Publisher

Hindawi Limited

Subject

Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3