Seismic Evaluation and Retrofit of Reinforced Concrete Buildings with Masonry Infills Based on Material Strain Limit Approach

Author:

Shendkar Mangeshkumar R.1,Kontoni Denise-Penelope N.23ORCID,Mandal Sasankasekhar1,Maiti Pabitra Ranjan1,Tavasoli Omid4ORCID

Affiliation:

1. Department of Civil Engineering, Indian Institute of Technology (IIT-BHU), Varanasi 221 005, India

2. Department of Civil Engineering, University of the Peloponnese, Patras GR-26334, Greece

3. School of Science and Technology, Hellenic Open University, Patras GR-26335, Greece

4. Department of Civil Engineering, Islamic Azad University, East Tehran Branch, Tehran, Iran

Abstract

The seismic evaluation and retrofit of reinforced concrete (RC) structures considering masonry infills is the correct methodology because the infill walls are an essential part of RC structures and increase the stiffness and strength of structures in seismically active areas. A three-dimensional four-storey building with masonry infills has been analyzed with nonlinear static adaptive pushover analysis by using the SeismoStruct software. Two models have been considered in this study: the first model is a full RC-infilled frame and the second model is an open ground storey RC-infilled frame. The infill walls have been modeled as a double strut nonlinear cyclic model. In this study, the “material strain limit approach” is first time used for the seismic evaluation of RC buildings with masonry infills. This method is based on the threshold strain limit of concrete and steel to identify the actual damage scenarios of the structural members of RC structures. The two models of the four-storey RC building have been retrofitted with local and global strengthening techniques (RC-jacketing method and incorporation of infills) as per the requirements of the structure to evaluate their effect on the response reduction factor (R) because the R-factor is an important design tool that shows the level of inelasticity in a structure. A significant increase in the response reduction factor (R) and structural plan density (SPD) has been observed in the case of the open ground storey RC-infilled frame after the retrofit. Thus, this paper aims to present a most effective way for the seismic evaluation and retrofit of any reinforced concrete structure through the material strain limit approach.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3