Towards a Statistical Model Checking Method for Safety-Critical Cyber-Physical System Verification

Author:

Xie Jian123ORCID,Tan Wenan123,Fang Bingwu24ORCID,Huang Zhiqiu123

Affiliation:

1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. Key Laboratory of Safety-Critical Software, Nanjing University of Aeronautics and Astronautics, Nanjing, China

3. Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing, China

4. College of Information Engineering, Anhui Finance and Trade Vocational College, Hefei, China

Abstract

Safety-Critical Cyber-Physical System (SCCPS) refers to the system that if the system fails or its key functions fail, it will cause casualties, property damage, environmental damage, and other catastrophic consequences. Therefore, it is vital to verify the safety of safety critical systems. In the community, the SCCPS safety verification mainly relies on the statistical model checking methodology, but for SCCPS with extremely high safety requirements, the statistical model checking method is difficult/infeasible to sample the extremely small probability event since the probability of the system violating the safety is very low (rare property). In response to this problem, we propose a new method of statistical model checking for high-safety SCCPS. Firstly, with the CTMC-approximated SCCPS path probability space model, it leverages the maximum likelihood estimation method to learn the parameters of CTMC. Then, the embedded DTMC can be derived from CTMC, and a cross-entropy optimization model based on DTMC can be constructed. Finally, we propose an algorithm of iteratively learning the optimal importance sampling distribution on the discrete path space and an algorithm to check the statistical model of verifying the rare attribute. Eventually, experimental results show that the method proposed in this paper can effectively verify the rare attributes of SCCPS. Under the same sample size, comparing with the heuristic importance sampling methods, the estimated value of this method can be better distributed around the mean value, and the related standard deviation and relative error are reduced by more than an order of magnitude.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference42 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction and Development of Cyber Physical Systems in Smart Grid with Blockchain Technology to Enhance Sustainability;2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS);2023-08-23

2. Security, Trust, and Privacy in Machine Learning-Based Internet of Things;Security and Communication Networks;2022-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3