Sequential Pattern Mining to Predict Medical In-Hospital Mortality from Administrative Data: Application to Acute Coronary Syndrome

Author:

Pinaire Jessica12ORCID,Chabert Etienne2,Azé Jérôme2ORCID,Bringay Sandra23ORCID,Landais Paul1ORCID

Affiliation:

1. UPRES EA 2415-Clinical Research University Institute, Montpellier University, Montpellier 34 093, France

2. LIRMM-UMR 5506, Montpellier University, Montpellier 34 093, France

3. AMIS, Paul Valéry University, Montpellier 34 199, France

Abstract

Prediction of a medical outcome based on a trajectory of care has generated a lot of interest in medical research. In sequence prediction modeling, models based on machine learning (ML) techniques have proven their efficiency compared to other models. In addition, reducing model complexity is a challenge. Solutions have been proposed by introducing pattern mining techniques. Based on these results, we developed a new method to extract sets of relevant event sequences for medical events’ prediction, applied to predict the risk of in-hospital mortality in acute coronary syndrome (ACS). From the French Hospital Discharge Database, we mined sequential patterns. They were further integrated into several predictive models using a text string distance to measure the similarity between patients’ patterns of care. We computed combinations of similarity measurements and ML models commonly used. A Support Vector Machine model coupled with edit-based distance appeared as the most effective model. We obtained good results in terms of discrimination with the receiver operating characteristic curve scores ranging from 0.71 to 0.99 with a good overall accuracy. We demonstrated the interest of sequential patterns for event prediction. This could be a first step to a decision-support tool for the prevention of in-hospital death by ACS.

Funder

Université de Montpellier

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3