Investigation of the Mechanism of Traditional Chinese Medicines in Angiogenesis through Network Pharmacology and Data Mining

Author:

Yun Wingyan12ORCID,Dan Wenchao12ORCID,Liu Jinlei1ORCID,Guo Xinyuan3ORCID,Li Min1ORCID,He Qingyong1ORCID

Affiliation:

1. Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China

2. Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China

3. Cancer Hospital Chinese Academy of Medical Sciences, Beijing 100021, China

Abstract

Although traditional Chinese medicine is effective and safe for the treatment of angiogenesis, the in vivo intervention mechanism is diverse, complex, and largely unknown. Therefore, we aimed to explore the active ingredients of traditional Chinese medicine and their mechanisms of action against angiogenesis. Data on angiogenesis-related targets were collected from GeneCards, Therapeutic Target Database, Online Mendelian Inheritance in Man, DrugBank, and DisGeNET. These were matched to related molecular compounds and ingredients in the traditional Chinese medicine system pharmacology platform. The data were integrated and based on the condition of degree > 1, and relevant literature, target-compound, compound-medicine, and target-compound-medicine networks were constructed using Cytoscape. Molecular docking was used to predict the predominant binding combination of core targets and components. We obtained 79 targets for angiogenesis; 41 targets were matched to 3839 compounds, of which 110 compounds were selected owing to their high correlation with angiogenesis. Fifty-five combinations in the network were obtained by molecular docking, among which PTGS2-astragalin (−9.18 kcal/mol), KDR-astragalin (−7.94 kcal/mol), PTGS2-quercetin (−7.41 kcal/mol), and PTGS2-myricetin (−7.21 kcal/mol) were top. These results indicated that the selected potential core compounds have good binding activity with the core targets. Eighty new combinations were obtained from the network, and the top combinations based on affinity were KDR-beta-carotene (−10.13 kcal/mol), MMP9-beta-sitosterol (−8.04 kcal/mol), MMP9-astragalin (−7.82 kcal/mol), and MMP9-diosgenin (−7.51 kcal/mol). The core targets included PTGS2, KDR, VEGFA, and MMP9. The essential components identified were astragalin, kaempferol, myricetin, quercetin, and β-sitosterol. The crucial Chinese medicines identified included Polygoni Cuspidati Rhizoma et Radix, Morus alba Root Bark, and Forsythiae Fructus. By systematically analysing the ingredients of traditional Chinese medicine and their targets, it is possible to determine their potential mechanisms of action against pathological angiogenesis. Our study provides a basis for further research and the development of new therapeutics for angiogenesis.

Funder

Beijing Science and Technology Rising Star

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Reference80 articles.

1. Tumor Angiogenesis: therapeutic Implications;J. Folkman;New England Journal of Medicine,1971

2. Tumor dormancy in vivo by prevention of neovascularization;M. A. Gimbrone;The Journal of Experimental Medicine,1972

3. Judah Folkman, a pioneer in the study of angiogenesis;D. Ribatti;Angiogenesis,2008

4. Angiogenesis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3