Simulation of the Compressive Strength of Cemented Tailing Backfill through the Use of Firefly Algorithm and Random Forest Model

Author:

Wang Qi-Ang1,Zhang Jia2,Huang Jiandong2ORCID

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering and School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. School of Mines, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Cemented tailings backfill is widely used in worldwide mining areas, and its development trend is increasing due to the technical and economic benefits. However, there is no reliable and simple machine learning model for the prediction of the compressive strength. In the present study, the research process to use artificial intelligence algorithms to predict the compressive strength of cemented tailing backfill was conducted, overcoming the shortcomings of traditional empirical formulas. Experimental tests to measure the compressive strength of cemented tailing backfill were conducted to construct the dataset for the machine learning. Five input parameters (tailing to cement ratio, percentage of fine tailings, cement type, curing time, and solid to water ratio) were considered for the design of the laboratory tests. The firefly algorithm (FA) was used to tune the random forest (RF) hyperparameters, and it was adopted to combine the RF model to improve the accuracy and efficiency for the prediction of the compressive strength of the cemented tailing backfill. By comparing the predicted and actual results, the reliability and accuracy of the prediction model proposed are confirmed. Tailing to cement ratio and curing time are the two most important parameters to the compressive strength of the cemented tailing backfill.

Funder

Fundmental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference39 articles.

1. Design of the Key Bearing Layer and Secondary Mining Technology for Previously Mined Areas of Small Coal Mines

2. Geotechnical considerations in mine backfilling in Australia

3. A review of underground mine backfilling methods with emphasis on cemented paste backfill;M. Sheshpari;Electronic Journal of Geotechnical Engineering,2015

4. Mix proportioning of underground cemented tailings backfill

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3