Genetic Polymorphism of the Nrf2 Promoter Region (rs35652124) Is Associated with the Risk of Diabetic Foot Ulcers

Author:

Teena Rajan1ORCID,Dhamodharan Umapathy1,Ali Daoud2,Rajesh Kesavan3,Ramkumar Kunka Mohanram1ORCID

Affiliation:

1. Department of Biotechnology and SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India

2. Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia

3. Department of Podiatry, Hycare Super Speciality Hospital, MMDA Colony, Arumbakkam, Chennai, Tamil Nadu, India

Abstract

The genetic polymorphism in the nuclear factor erythroid 2-related factor 2 (Nrf2) gene has been reported as one of the prognosis markers for various diseases, including cancer. Nrf2 is a key transcription factor involved in wound healing by regulating angiogenesis. We investigated the genetic association of NRF2 single-nucleotide polymorphism rs35652124 with T2DM and DFU and assessed its functional impact. A total of 400 subjects were recruited for the study and categorized into three groups: infected DFU patients (DFU, n=100), T2DM patients without complications (T2DM, n=150), and healthy adults with normal glucose tolerance (NGT, n=150). The subjects were genotyped by PCR-RFLP, and the polymorphism was identified by bidirectional Sanger sequencing. The expression of NRF2, IL-10, TNF-α, and IL-6 was studied by qPCR to evaluate the functional impact of rs35652124. The “TT” genotype of rs35652124 was associated with a significant risk for T2DM [OR=2.2 (1.2-4.2), p=0.01] and DFU [OR=7.9 (4-14.9), p<0.0001]. A significant decrease in transcriptional levels of NRF2 and IL-10 and a remarkable increase in TNF-α and IL-6 were observed in subjects with TT genotype. In conclusion, rs35652124 (TT) is a harmful genetic variant that predisposes to insulin resistance and impaired angiogenesis. Hence, it may serve as a diagnostic genetic marker for T2DM and DFU in combination with different inflammatory markers.

Funder

King Saud University

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3