A Heuristic Machine Learning-Based Optimization Technique to Predict Lung Cancer Patient Survival

Author:

Kukreja Sonia1ORCID,Sabharwal Munish1ORCID,Shah Mohd Asif2ORCID,Gill D. S.3ORCID

Affiliation:

1. School of Computing Science and Engineering, Galgotias University, Greater Noida, India

2. Kebri Dehar University, Kebri Dahar, Ethiopia

3. School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea

Abstract

Cancer has been a significant threat to human health and well-being, posing the biggest obstacle in the history of human sickness. The high death rate in cancer patients is primarily due to the complexity of the disease and the wide range of clinical outcomes. Increasing the accuracy of the prediction is equally crucial as predicting the survival rate of cancer patients, which has become a key issue of cancer research. Many models have been suggested at the moment. However, most of them simply use single genetic data or clinical data to construct prediction models for cancer survival. There is a lot of emphasis in present survival studies on determining whether or not a patient will survive five years. The personal issue of how long a lung cancer patient will survive remains unanswered. The proposed technique Naive Bayes and SSA is estimating the overall survival time with lung cancer. Two machine learning challenges are derived from a single customized query. To begin with, determining whether a patient will survive for more than five years is a simple binary question. The second step is to develop a five-year survival model using regression analysis. When asked to forecast how long a lung cancer patient would survive within five years, the mean absolute error (MAE) of this technique’s predictions is accurate within a month. Several biomarker genes have been associated with lung cancers. The accuracy, recall, and precision achieved from this algorithm are 98.78%, 98.4%, and 98.6%, respectively.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3