Development of the Large-Tonnage Pressure-Type Prestressed Anchor Cable with BFRP for Geotechnical Engineering and Its Mechanical Properties

Author:

Du Zhigang12ORCID,Li Ning1ORCID,Ding Wuxiu1ORCID,Tao Yawen13,Wu Xiaolei1,Guo Jinjun1,You Peng4,Wang Chaoqin4,Archbold Paul5,Mullarney Brian5,Xie Bing1

Affiliation:

1. School of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China

2. Yima Coal Corporation, Henan Energy Group Corporation, Sanmenxia 472000, China

3. College of Civil Engineering and Architecture, Henan University of Technology, Zhengzhou 450000, China

4. Center of Highway Development, Luoyang 471023, China

5. School of Engineering & Materials Research Institute, Athlone Institute of Technology, Westmeath N37 HD68, Ireland

Abstract

Prestressed anchor cable is widely used in geotechnical engineering to control the displacement or landslide of an unstable slope. However, the traditional cable anchor is made of steel material, which is easy to get rust in a corrosive environment. Basalt fiber-reinforced plastics (BFRP) are a kind of emerging compound material, with a good performance of high strength, low weight, and anticorrosion. Herein, an innovative large-tonnage pressure-type prestressed anchor is made with BFRP. This large-tonnage BFRP anchor cable has seven bunch structures of the “BFRP-connector-strand.” In each bunch of the “BFRP-connector-strand,” three BFRP tendons and one steel strand are connected inside a steel sleeve connector using the epoxy resin adhesive. The ultimate load-bearing capacity of this BFRP cable anchor can reach 202.38 tonnages. At the ultimate tensioning force condition, the strain of BFRP tendons for this large-tonnage BFRP anchor cable ranges from 1.51% to 1.76%. In the tensioning operation, there is a linear growth relationship between the tensioning force and the strain for this BFRP cable anchor. Once the tensioning force reaches the ultimate strength of this BFRP anchor cable, this cable will present system failure. This situation primarily results from the failure of the “BFRP-connector-strand.” The failure modes of this BFRP anchor cable can be classified into three types: the steel strand rupture, the steel connector rupture, and the BFRP tendon rupture. During the tensioning operation, due to the length difference of the BFRP tendons, this large-tonnage BFRP cable anchor presents an end-off-axis effect. It makes the load bearing of the BFRP tendons 5.00~6.60 times larger than that of the no end-off-axis effect. Nevertheless, due to the plastic deformation of the end steel anchor sleeve, the influence of the end-off-axis effect decreases with the increase of applied tensioning force. The load-bearing capacity of this large-tonnage BFRP cable anchor reaches 87.70~91.50% of its theoretical value.

Funder

Key Research and Development Project of Henan Province

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3