Affiliation:
1. Department of Mathematics, Shanxi Normal University, Linfen 041000, China
Abstract
In this paper, we deal with the existence and uniqueness of the solutions of two-point boundary value problem of fourth-order ordinary differential equation: u4(t)=f(t,u(t),u′(t)), t∈[0,1], u(0)=u′(0)=u′′(1)=u′′′(1)=0, where f:[0,1]×R2→R is a continuous function. The problem describes the static deformation of an elastic beam whose left end-point is fixed and right is freed, which is called slanted cantilever beam. Under some weaker assumptions, we establish a new maximum principle by the perturbation of positive operator and construct the monotone iterative sequence of the lower and upper solutions, and, based on this, we obtain the existence and uniqueness results for the slanted cantilever beam.
Subject
General Engineering,General Mathematics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献