Analytical Study of Geometric Parameter Effect on the Behavior of Horizontally Curved Reinforced Concrete Deep Beam

Author:

Kenea Goshu1ORCID

Affiliation:

1. Department of Civil Engineering, Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, Oromia, Ethiopia

Abstract

Nonlinear finite element simulation was once employed to look into the behavior of horizontally curved reinforced concrete deep beams under concentrated load at its mid-span. The study focused on the parametric impact of span length-to-depth (L/D) and span length-to-radius (L/R) ratios. In addition, the effect of longitudinal and spacing of shear reinforcement on the behavior of the beam has been investigated. The study considered sixteen beam specimens. Three of these specimens were straight beams as a control, and others were curved beams. The concrete-damaged plasticity model has been used to model the beam with C-25 grade concrete and steel reinforcements having diameters of ∅ 4 mm, ∅ 10 mm, and ∅ 12 mm with 568 MPa, 596 MPa, and 643 MPa steel grade, respectively. Reduced twenty-noded brick (C3D20 R) and two-noded (T3D2) elements have been used for modeling concrete and steel, respectively. The ultimate load capacity, the strain distribution, the load-deflection curve, and the load-twisting curve are the main outputs of the FE simulation. The study confirmed a considerable decrease in load-carrying capacity by up to 8.74% and 27.95% as the (L/R) ratio increased from 0 to 1.57 and the L/D ratio increased from 2.4 to 3, respectively. However, as the longitudinal steel ratio increased from 0.02042 to 0.02608 and the spacing of shear reinforcement decreased from 100 mm to 50 mm, the ultimate load capacity is increased up to 9.28% and 4.3%, respectively. Sensitivity evaluation was also conducted to see how much the independent variables (L/D ratio, L/R ratio, longitudinal bar ratio, and spacing transverse reinforcement) affect the dependent parameter (ultimate load capacity).

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

Reference32 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3