Systematic Pharmacology-Based Strategy to Explore the Molecular Network Mechanism of Modified Taohong Siwu Decoction in the Treatment of Premature Ovarian Failure

Author:

Yuan Xiao1,Xiang Wang1,Yang Kailin1ORCID,Liu Huiping1ORCID,Zhang Guomin1ORCID,He Qi1,Fan Jiapeng2

Affiliation:

1. Hunan University of Chinese Medicine, Changsha, Hunan, China

2. Harbin Institute of Petroleum, Harbin, Heilongjiang Province, China

Abstract

Objective. To explore the molecular network mechanism of modified Taohong Siwu Decoction (MTHSWD) to interfere with premature ovarian failure based on systematic pharmacological strategy. Methods. The network pharmacology strategy was used to explore the potential mechanism of MTHSWD intervention in POF, and then it was verified through animal experiments. Mouse zona pellucida 3 was used as an antigen to subcutaneously immunize BALB/c female mice to establish an immune POF model. Mice were divided into MTHSWD low-, medium-, and high-dose groups, positive control group, model group, and normal group. After 30 days of drug intervention, ovarian tissue was taken for pathological hematoxylin-eosin (HE) staining, and immunohistochemical methods were used to detect the expression of TGF-β1 and TGF-βRII and Smad2/3 protein expression in follicular wall granular cells and ovarian tissue, respectively. Results. Network pharmacology studies have shown that MTHSWD may interfere with the TGF-β signaling pathway. Animal experimental research shows that, compared with the model group, the number of ovarian mature follicles in the MTHSWD groups and the positive group was significantly increased, and the number of atresia follicles decreased. Immunohistochemistry showed that, compared with the control group, the expression of TGF-β1, TGF-βRII, and Smad2/3 in the follicular wall granulosa cells and ovarian tissues of MTHSWD groups was significantly higher than that of the model group ( P < 0.05 ). Conclusion. MTHSWD may improve the ovarian function of POF mice by upregulating the protein expression of granulosa cells TGF-β1, TGF-βRII, and Smad2/3.

Funder

Education Department of Hunan Province

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3