A Novel Framework of Modelling, Control, and Simulation for Autonomous Quadrotor UAVs Utilizing Arduino Mega

Author:

Tran Hoang T.12,Tran Dong L. T.1,Nguyen Vinh Q.3,Do Hai T.4,Nguyen Minh T.4ORCID

Affiliation:

1. Center of Electrical Engineering, Duy Tan University, Danang, 550000, Vietnam

2. Faculty of Electrical-Electronic Engineering, Duy Tan University, Danang, 550000, Vietnam

3. Academy of Military Science and Technology, Hanoi 100000, Vietnam

4. Thai Nguyen University of Technology, Thainguyen, 240000, Vietnam

Abstract

In recent decades, there has been a constant increase in the use of unmanned aerial vehicles (UAVs). There has also been a huge growth in the number of control algorithms to support the many applications embodied by the vehicles, including challenges and open issues to develop. This paper focuses on three major classes of control methods applied to quadrotors in order to create an open-source model based on the Arduino Mega that allows for the derivation and design of quadrotor control strategies. We consider the perspective classes, including linear, nonlinear, and intelligent methods representing in details with applications in developing an open-source controller for the quadrotor using the Arduino Mega and the BNO055 9 DOF sensor. We propose Proportional Integral Derivative (PID), backstepping integrator, and model predictive control (MPC) to track a generated Lissajous curve for surveillance. Simulations in the Matlab–Simulink environment with 3D visualization of a developed quadrotor model using CAD software, with robustness and performance discussion, are provided. Our experimental work is developed with an extensive illustration of the hardware and algorithm design and by demonstrating the effectiveness of the proposed architectures. The results show promise in practical and in intelligent applications.

Funder

Thai Nguyen University of Technology

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3