Ethanol Extract of Leaves of Cassia siamea Lam Protects against Diabetes-Induced Insulin Resistance, Hepatic, and Endothelial Dysfunctions in ob/ob Mice

Author:

Koffi Camille12,Soleti Raffaella2ORCID,Nitiema Mathieu2,Mallegol Patricia2,Hilairet Gregory2,Chaigneau Julien3,Boursier Jerome3,Kamagate Mamadou4,Le Lay Soazig2,Die-Kakou Henri Maxime1,Andriantsitohaina Ramaroson2ORCID

Affiliation:

1. Laboratory of Clinical Pharmacology, Université Félix Houphouët-Boigny, Côte d’Ivoire

2. INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, Université d’Angers, Université Bretagne Loire, Angers, France

3. EA 3859, Hémodynamique, Interaction Fibrose et Invasivité Tumorales Hépatiques (HIFIH), 49 933 Angers, France

4. Laboratory of Clinical Pharmacology, University of Alassane Ouattara, Côte d’Ivoire

Abstract

Despite long traditional utilization and some reports on the antihyperglycemic and antihyperlipidemic action of Cassia siamea, the mechanisms involved have not been investigated yet. Thus, the objective of the present study was to investigate whether and how oral administration of the ethanolic extract of Cassia siamea Lam leaves (LECS) improves glucose and insulin homoeostasis, liver damage, and endothelial dysfunction in an experimental model of type 2 diabetes, the leptin-deficient ob/ob mice. Oxidative stress and protein expression of insulin-dependent and insulin -independent signaling pathways were studied. Obese (ob/ob) vs. control (ob/+) mice were treated daily with intragastric administration of either vehicle or LECS (200 mg/kg, per day) for 4 weeks. Fasting blood glucose, body weight, food intake, glucose and insulin tolerance, oxidative stress, and liver damage as well as vascular complications with respect to endothelial dysfunction were examined. Administration of LECS in obese mice significantly reduced blood glucose and insulin levels, improved glucose tolerance and insulin sensitivity, and restored the increase of circulating AST and ALT without modification of body weight and food intake. These effects were associated with increased activity of both insulin and AMPK pathways in the liver and skeletal muscles. Of particular interest, administration of LECS in obese mice completely prevented the endothelial dysfunction resulting from an increased NO and decreased reactive oxygen species (ROS) production in the aorta. Altogether, oral administration of LECS remarkably attenuates features of type 2 diabetes on glucose, hepatic inflammation, insulin resistance, endothelial function, and vascular oxidative stress, being as most of these effects are related to insulin-dependent and insulin-independent mechanisms. Therefore, this study points for the therapeutic potential of Cassia siamea in correcting both metabolic and vascular alterations linked to type 2 diabetes.

Funder

Institut national de la santé et de la recherche médicale

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3