Modeling and Simulation of a Moving Yarn Segment: Based on the Absolute Nodal Coordinate Formulation

Author:

Li Shujia1,Wang Yongxing12ORCID,Ma Xunxun1,Wang Shengze12

Affiliation:

1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China

2. Research Center of Advanced Textile Machinery, Ministry of Education, Donghua University, Shanghai 201620, China

Abstract

A new finite element dynamic model of a moving yarn segment has been proposed in this paper based on the absolute nodal coordinate formulation (ANCF). Apart from taking into account the elastic properties of the yarn in three dimensions, the model also considers the viscosity in the longitudinal direction and takes into account the effect of gravity and air resistance. In this paper, the simulation described the movement of the yarn segment that is pulled by the fixer on the guideway. Then, a corresponding experiment was proposed to evaluate the theoretical model. The theoretical and experimental comparisons of the motion tracing exhibited good agreement, demonstrating that the new model could predict the actual moving trace of the yarn segment. Moreover, another simulation of the spatial motion of the yarn segment was presented, to elucidate the role of the model in predicting the movement of the yarn segment. After considering the parameters of the actual process and its constraints, the authors established that the proposed model could be used to predict the trajectory of a yarn segment in the actual production process, which is vital when fabricating textile products.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3