Affiliation:
1. School of Economics and Management, Bengbu University, Bengbu, Anhui 233030, China
2. Anhui Radio and Television University, Hefei Branch, Hefei, Anhui 230001, China
Abstract
For the accuracy requirements of commodity image detection and classification, the FPN network is improved by DPFM ablation and RFM, so as to improve the detection accuracy of commodities by the network. At the same time, in view of the narrowing of channels in the application of traditional MWI-DenseNet network, a new GTNet network is proposed to improve the classification accuracy of commodities.The results show that at different levels of evaluation indexes, the dpFPN-Netv2 algorithm improved by DPFM + RFM fusion has higher target detection accuracy than RetinaNet-50 algorithm and other algorithms. And the detection time is 52 ms, which is significantly lower than 90 ms required for RetinaNet-50 detection. In terms of target recognition, compared with the traditional MWI-DenseNet neural network, the computation amount of the improved MWI DenseNet neural network is significantly reduced under different shunt ratios, and the recognition accuracy is significantly improved. The innovation of this study lies in improving the algorithm from the perspective of target detection and recognition, so as to change the previous improvement that only can be made in a single way.
Funder
Study of Cross-Border E-Commerce Promoting the transformation Upgrade of Manufacturers
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献