Preprocessing Approach for Power Transformer Maintenance Data Mining Based on k-Nearest Neighbor Completion and Principal Component Analysis

Author:

Manyol Moïse1ORCID,Eke Samuel1ORCID,Massoma Alphonse J. M.1ORCID,Biboum Alain2ORCID,Mouangue Ruben1ORCID

Affiliation:

1. Energy, Materials, Modeling, and Methods Research Laboratory (LE3M), Polytechnic Higher National School, University of Douala, 2701, Pk. 17 Logbessou, Douala, Cameroon

2. Mechanical and Industrial Engineering Department, National Advanced School of Engineering of Yaounde, University of Yaounde I, 33100 Melen1, Yaounde, Cameroon

Abstract

The accuracy of a knowledge extraction algorithm in a large database depends on the quality of the data preprocessing and the methods used. The massive amounts of data that we collect every day are putting storage capacity at a premium. In reality, many databases are characterized by attributes with outliers, redundant, and even more missing values. Missing data and outliers are ubiquitous in our databases, and imputation techniques will help us mitigate their influence. To solve this problem, as well as the problem of data size, this paper proposes a data preprocessing approach based on the k-nearest neighbor (KNN) completion for imputation of missing data and principal component analysis (PCA) for processing redundant data, thus reducing the data size by generating a significant quality sample after imputation of missing and outlier data. A rigorous comparison is made between our approach and two others. The dissolved gas data from Rio Tinto Alcan’s transformer T0001 were imputed by KNN, where k equals 5. For 6 imputed gases, the average percentage error is about 2%, 17.5% after average imputation, and 23.65% after multiple imputations. For data compression, 2 axes were selected based on the elbow rule and the Kaiser threshold.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multifeature Short-Term Power Load Forecasting Based on GCN-LSTM;International Transactions on Electrical Energy Systems;2023-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3