Numerical Simulation on Hydrofracture Propagation in Fractured-Vuggy Unconventional Reservoirs

Author:

Jiang Tingxue12ORCID,Wang Haitao12ORCID,Bian Xiaobing12ORCID,Wang Daobing3ORCID,Zhou Jun12ORCID,Yu Bo3ORCID

Affiliation:

1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 102206, China

2. SINOPEC Research Institute of Petroleum Engineering Co., Ltd., Beijing 102206, China

3. School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China

Abstract

The unconventional reservoirs such as carbonate formation develops complex and diverse storage space structures, and it is composed of large-scale cavity, dissolved vug, and fractures. The carbonate reservoir is highly heterogeneous. Acid fracturing of carbonate reservoir is completed through the complex mechanical mechanism of interaction between vug and hydraulic fracture (HF). We use the equivalent method of reducing the rock strength by acid etching and serious fluid leakoff during interaction of HF and vug to establish a finite element (FE) model of HF propagation during acid fracturing in the fractured-vuggy carbonate reservoir. The model considers the effect of serious fluid leakoff during interaction between HF and vug, mechanism of interaction between HFs and the fracture-vug system, and change in acid etching intensity. Then, we carry out numerical simulation on impacts of injection rate, fluid viscosity, leakoff behavior in fractures and vugs, and natural fracture (NF) approaching angle on HF propagation in acid fracturing and compare the characteristics of injection pressure, fracture pressure, and HF size. It is suggested that the acid fracturing treatment should be operated by increasing the acid solution viscosity to reduce fluid leakoff, injecting fracturing fluid and acid fluid alternatively, increasing injection rate, and injecting fibers and ceramics when small pressure drop occurs during the HF interacts with the fracture-vug. When a large pressure drop occurs, it is suggested that the middle-low viscosity acid be injected at a low rate to etch the carbonate rock and enhance the fracture conductivity. HF propagates under higher pressure when the NF approaching angle is smaller.

Funder

Beijing Natural Science Foundation Project

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3