Sparse-Coding-Based Autoencoder and Its Application for Cancer Survivability Prediction

Author:

Huang Gang1ORCID,Wang Hailun1,Zhang Lu1

Affiliation:

1. College of Electrical and Information Engineering, Quzhou University, Quzhou 324000, China

Abstract

Cancer-survivability prediction is one of the popular research topics, that attracted great attention from both the health service providers and academia. However, one remaining question comes from how to make full use of a large number of available factors (or features). This paper, accordingly, presents a novel autoencoder algorithm based on the concept of sparse coding to address this problem. The main contribution is twofold: the utilization of sparsity coding for input feature selection and a subsequent classification using latent information. Precisely, a typical autoencoder architecture is employed for reconstructing the original input. Then the sparse coding technique is applied to optimize the network structure, with the aim of selecting optimal features and enhancing the generalization capability. In addition, the refined latent information is further cast as alternative features for training a sparse classifier. To evaluate the performance of the proposed autoencoder architecture, we present a comprehensive analysis using a publicly available data repository (i.e., Surveillance, Epidemiology, and End Results, SEER). Experimental study shows that the proposed approach has the ability of extracting important features from high-dimensional inputs and achieves competitive performance than other state-of-the-art classification techniques.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3