Regionalization of the Mortality Risk from Cardiomyopathy and Respiratory Diseases Based on the Maximum Entropy Model

Author:

Ordoñez-Sierra Raymundo,Domínguez-Cortinas GabrielaORCID,Hernández-Paniagua Iván YassmanyORCID,Expósito-Castillo José Luis,Gómez-Albores Miguel A.ORCID,Rodríguez-Reyes María Guadalupe,Carrasco-Gallegos Brisa Violeta,Manzano-Solís Luis RicardoORCID

Abstract

This research presents a time‐series study in one of the most polluted regions in Mexico, the southern part of the Mezquital Valley. Three mortality causes related to areas highly contaminated by industrial activities were considered to carry out this model, namely, ischemic cardiomyopathy, mesothelioma, and pneumoconiosis. The pollutant exposure factors used in the maximum entropy modeling were distance to rivers, distance to industries, particulate matter less than 2.5 microns (PM < 2.5 µm), and the digital elevation model (DEM). A model that expresses the presence of the disease by areas of exposure to pollutants was also obtained. In addition, the odds ratio was calculated to evaluate the level of association of ischemic cardiomyopathy (OR = 3.37 and 95% CI: 3.05–3.6) and mesothelioma (OR = 4.79 and 95% CI: 3.5–6.08) by areas of exposure. In the case of pneumoconiosis, only cases in the very high exposure category were recorded, so it was not comparable with the remaining areas. It is important to mention that particulate matter in the municipalities of the Mezquital Valley presented values above 20 μg/m3 and that in accordance with the provisions of the Norma Oficial Mexicana de Salud Ambiental or NOM (translated as Mexican Official Standard for Environmental Health) and the Agency for Toxic Substances and the Disease Registry (ATSDR), high concentrations of particulate matter can have a severe impact on the development of some diseases. In the studied area, ischemic cardiomyopathy and mesothelioma were attributed to pollution in 70.3% and 79.1%, respectively; therefore, pollution mitigation could prevent the occurrence of these two diseases.

Funder

Universidad Autónoma del Estado de México

Consejo Nacional de Ciencia y Tecnología

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3