Edge-Based Detection and Classification of Malicious Contents in Tor Darknet Using Machine Learning

Author:

Li Runchuan1,Chen Shuhong1ORCID,Yang Jiawei1,Luo Entao2

Affiliation:

1. School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China

2. School of Electronics and Information Engineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China

Abstract

With the increase of data in the network, the load of servers and communication links becomes heavier and heavier. Edge computing can alleviate this problem. Due to a sea of malicious contents in Darknet, it is of high research value to combine edge computing with content detection and analysis. Therefore, this paper illustrates an intelligent classification system based on machine learning and Scrapy that can detect and judge fleetly categories of services with malicious contents. Because of the nondisclosure and short survival time of Tor Darknet domain names, obtaining uniform resource locators (URLs) and resources of the network is challenging. In this paper, we focus on a network based on the Onion Router (tor) anonymous communication system. We designed a crawler program to obtain the contents of the Tor network and label them into six classes. We also construct a dataset which contains URLs, categories, and keywords. Edge computing is used to judge the category of websites. The accuracy of the classifier based on a machine learning algorithm is as high as 89%. The classifier will be used in an operational system which can help researchers quickly obtain malicious contents and categorize hidden services.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3