Deep Learning-Based Mental Health Model on Primary and Secondary School Students’ Quality Cultivation

Author:

Li Shuang1,Liu Yu1ORCID

Affiliation:

1. Department of Psychology, Guizhou Minzu University, Guiyang 550025, Guizhou, China

Abstract

The purpose was to timely identify the mental disorders (MDs) of students receiving primary and secondary education (PSE) (PSE students) and improve their mental quality. Firstly, this work analyzes the research status of the mental health model (MHM) and the main contents of PSE student-oriented mental health quality cultivation under deep learning (DL). Secondly, an MHM is implemented based on big data technology (BDT) and the convolutional neural network (CNN). Simultaneously, the long short-term memory (LSTM) is introduced to optimize the proposed MHM. Finally, the performance of the MHM before and after optimization is evaluated, and the PSE student-oriented mental health quality training strategy based on the proposed MHM is offered. The results show that the accuracy curve is higher than the recall curve in all classification algorithms. The maximum recall rate is 0.58, and the minimum accuracy rate is 0.62. The decision tree (DT) algorithm has the best comprehensive performance among the five different classification algorithms, with accuracy of 0.68, recall rate of 0.58, and F1-measure of 0.69. Thus, the DT algorithm is selected as the classifier. The proposed MHM can identify 56% of students with MDs before optimization. After optimization, the accuracy is improved by 0.03. The recall rate is improved by 0.19, the F1-measure is improved by 0.05, and 75% of students with MDs can be identified. Diverse behavior data can improve the recognition effect of students’ MDs. Meanwhile, from the 60th iteration, the mode accuracy and loss tend to be stable. By comparison, batch_size has little influence on the experimental results. The number of convolution kernels of the first convolution layer has little influence. The proposed MHM based on DL and CNN will indirectly improve the mental health quality of PSE students. The research provides a reference for cultivating the mental health quality of PSE students.

Funder

2021 National Social Science Fund Late-Stage Funding Project

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generating Sub-emotions from Social Media Data Using NLP to Ascertain Mental Illness;Communications in Computer and Information Science;2023-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3