Tribological Behavior of Al/Nanomagnesium/Aluminum Nitride Composite Synthesized through Liquid Metallurgy Technique

Author:

Srinivasan D.1,Meignanamoorthy M.1,Gacem Amel2,Vinayagam Mohanavel34,Sathish Thanakodi5,Ravichandran M.14,Srinivasan Suresh Kumar6,Abdellattif Magda H.7,Allasi Haiter Lenin8ORCID

Affiliation:

1. Department of Mechanical Engineering, K. Ramakrishnan College of Engineering, Trichy, 621112 Tamil Nadu, India

2. Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria

3. Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, Tamilnadu, India

4. Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, India

5. Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India

6. Department of General Engineering (MECH), Panimalar Engineering College Chennai City Campus, Chennai, Tamil Nadu, India

7. Department of Chemistry, College of Science, Taif University, Al Hawiyah, Taif 21944, Saudi Arabia

8. Department of Mechanical Engineering, Wollo University, Kombolcha Institute of Technology, Kombolcha, Ethiopia

Abstract

Despite its excellent qualities such as hardness, tensile, and yield strength, aluminum alloys are mostly used in aviation fins and car frames. However, wear resistance at maximum load is weak. This effort will now synthesize and investigate the tribological behavior of AA6063- (AlMg0.7Si-) AlN composites. The goal of this experiment is to determine the best wear rate and coefficient of friction for the AA6063-AlN with nanomagnesium composites developed. Weight percent, load (L), sliding velocity (SV), and sliding distance (SD) are the process factors studied, and the output responses are wear rate and friction coefficient. Bottom pouring type stir casting was used to create AA6063-AlN composites with various weight percentages. The various compositions are AA6063, AA6063-4 wt% AlN, AA6063-8 wt% AlN, and AA6063-12 wt% AlN. A pin-on-disc machine inspected the wear rate and friction coefficient of AA6063-AlN composites. Experimentation was done according to L16 orthogonal array (OA). Wear rate (WR) and coefficient of friction (COF) examinations were made to identify the optimum parameters to obtain minimum WR and COF for the AA6063-AlN composite via grey relational analysis (GRA). The contour plot analysis clear displays WR and COF with respect to wt% vs. L, wt% vs. SV and wt% vs. SD. The ANOVA outcomes revealed that wt% is the most vital parameter (85.55%) persuading WR and COF. The optimized parameters to achieve minor WR and COF was found as 12 wt% of AlN, L 20 N, SV 3 m/s, and SD 400 m. The worn surface was analyzed using scanning electron microscope and indicates that addition of AlN particles with matrix reduces the scratches. These articles offer a key for optimum parameters on wear rate and COF of AA6063-AlN composites via Taguchi grey relational analysis.

Funder

Taif University

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3