Maximal Information Coefficient-Based Testing to Identify Epistasis in Case-Control Association Studies

Author:

Guo Yingjie12ORCID,Yuan Zhian3,Liang Zhen4,Wang Yang1,Wang Yanpeng5ORCID,Xu Lei1ORCID

Affiliation:

1. School of Electronic and Communication Engineering, Shenzhen Polytechnic, 7098 Liuxian Street, Shenzhen 518000, China

2. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No. 4 Block 2 North Jianshe Road, Chengdu 610054, China

3. Research Institute of Big Data Science and Industry, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China

4. School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China

5. Beidahuang Industry Group General Hospital, Harbin, China

Abstract

Interactions between genetic variants (epistasis) are ubiquitous in the model system and can significantly affect evolutionary adaptation, genetic mapping, and precision medical efforts. In this paper, we proposed a method for epistasis detection, called EpiMIC (epistasis detection through a maximal information coefficient (MIC)). MIC is a promising bivariate dependence measure explicitly designed for rapidly exploring various function types equally and for interpreting and comparing them on the same scale. Most epistasis detection approaches make assumptions about the form of the association between genetic variants, resulting in limited statistical performance. Based on the notion that if two SNPs do not interact, their joint distribution in all samples and in only cases should not be substantially different. We developed a statistic that utilizes the difference of MIC as a signal of epistasis and combined it with a permutation resampling strategy to estimate the empirical distribution of our statistic. Results of simulation and real-world data set showed that EpiMIC outperformed previous approaches for identifying epistasis at varying degrees of heredity.

Funder

Shenzhen Polytechnic

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3