The Long Noncoding RNA MEG3 Is Downregulated and Inversely Associated with VEGF Levels in Osteoarthritis

Author:

Su Wei1,Xie Wen2,Shang Qingkun3,Su Bing4ORCID

Affiliation:

1. Department of Orthopedics, The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan 453003, China

2. Luoyang Orthopedic Hospital, Luoyang, Henan 471002, China

3. Department of Biostatistics, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214, USA

4. Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, China

Abstract

Osteoarthritis (OA) is becoming a major public health problem in China, especially considering the increase in average life expectancy of the population. Thus, enhanced understanding of the molecular changes associated with OA is urgently needed to develop more effective strategies for the diagnosis and treatment of this debilitating disease. LncRNAs play an important role in the processes of bone and cartilage development. Maternally expressed gene 3 (MEG3) is a maternally expressed lncRNA and may function as a tumor suppressor by inhibiting angiogenesis. OA is closely associated with angiogenesis and the inhibition of angiogenesis presents a novel therapeutic approach to reduce inflammation and pain in OA. In this study, we detected the mRNA expression of MEG3 and VEGF in articular cartilage samples from 20 OA patients and 10 healthy volunteers by real-time RT-PCR. VEGF protein is detected by ELISA in cartilage samples. The results show that human MEG3 is significantly downregulated in OA patients compared to normal cartilage samples. However, higher levels of VEGF mRNA and protein are found in OA compared to the control. Moreover, MEG3 levels are inversely associated with VEGF levels, suggesting that MEG3 may be involved in OA development through the regulation of angiogenesis.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3