Efficient Cross-Layer Optimization Algorithm for Data Transmission in Wireless Sensor Networks

Author:

Li Chengtie1,Wang Jinkuan1,Li Mingwei1

Affiliation:

1. School of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China

Abstract

In this paper, we address the problems of joint design for channel selection, medium access control (MAC), signal input control, and power control with cooperative communication, which can achieve tradeoff between optimal signal control and power control in wireless sensor networks (WSNs). The problems are solved in two steps. Firstly, congestion control and link allocation are separately provided at transport layer and network layer, by supply and demand based on compressed sensing (CS). Secondly, we propose the cross-layer scheme to minimize the power cost of the whole network by a linear optimization problem. Channel selection and power control scheme, using the minimum power cost, are presented at MAC layer and physical layer, respectively. These functions interact through and are regulated by congestion rate so as to achieve a global optimality. Simulation results demonstrate the validity and high performance of the proposed algorithm.

Funder

Fundamental Research Funds for the Central Universities of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large-scale Urban Cellular Traffic Generation via Knowledge-Enhanced GANs with Multi-Periodic Patterns;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04

2. A Bio-inspired Hybrid Cross-Layer Routing Protocol for Energy Preservation in WSN-Assisted IoT;KSII Transactions on Internet and Information Systems;2021-04-30

3. Iterative Forward-Backward Pursuit Algorithm for Compressed Sensing;Journal of Electrical and Computer Engineering;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3