Swarm Intelligence to Face IoT Challenges

Author:

Abualigah Laith1,Falcone Deborah2,Forestiero Agostino2ORCID

Affiliation:

1. Computer Science Department, Prince Hussein Bin Abdullah Faculty for Information Technology, Al Al-Bayt University, Mafraq 25113, Jordan

2. Institute for High Performance Computing and Networking, National Research Council, Rende, CS, Italy

Abstract

The Internet of Things (IoT) paradigm denotes billions of physical entities connected to Internet that allow the collecting and sharing of big amounts of data. Everything may become a component of the IoT thanks to advancements in hardware, software, and wireless network availability. Devices get an advanced level of digital intelligence that enables them to transmit real-time data without applying for human support. However, IoT also comes with its own set of unique challenges. Heavy network traffic is generated in the IoT environment for transmitting data. Reducing network traffic by determining the shortest route from the source to the aim decreases overall system response time and energy consumption costs. This translates into the need to define efficient routing algorithms. Many IoT devices are powered by batteries with limited lifetime, so in order to ensure remote, continuous, distributed, and decentralized control and self-organization of these devices, power-aware techniques are highly desirable. Another requirement is to manage huge amounts of dynamically changing data. This paper reviews a set of swarm intelligence (SI) algorithms applied to the main challenges introduced by the IoT. SI algorithms try to determine the best path for insects by modeling the hunting behavior of the agent community. These algorithms are suitable for IoT needs because of their flexibility, resilience, dissemination degree, and extension.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference68 articles.

1. Research commentary —the new organizing logic of digital innovation: an agenda for information systems research;Y. Yoo;Information Systems Research,2010

2. Internet of things;F. Wortmann;Business and Information Systems Engineering,2015

3. A multi agent approach for the construction of a peer-to-peer information system in grids;A. Forestiero;Self-Organization and Autonomic Informatics (I),2005

4. A Proximity-Based Self-Organizing Framework for Service Composition and Discovery

5. Reorganization and discovery of grid information with epidemic tuning

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3