Mild Hypothermia Attenuates Hepatic Ischemia–Reperfusion Injury through Regulating the JAK2/STAT3-CPT1a-Dependent Fatty Acid β-Oxidation

Author:

Wang Wei1ORCID,Hu Xiaoyan1ORCID,Xia Zhiping1,Liu Zhongzhong1ORCID,Zhong Zibiao1ORCID,Lu Zhongshan1ORCID,Liu Anxiong1ORCID,Ye Shaojun1,Cao Qin1,Wang Yanfeng1ORCID,Zhu Fan2,Ye Qifa13ORCID

Affiliation:

1. Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, 430071, China

2. State Key Laboratory of Virology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan, China

3. The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, 410013, China

Abstract

Hepatic ischemia–reperfusion (IR) injury is a clinical issue that can result in poor outcome and lacks effective therapies at present. Mild hypothermia (32–35°C) is a physiotherapy that has been reported to significantly alleviate IR injury, while its protective effects are attributed to multiple mechanisms, one of which may be the regulation of fatty acid β-oxidation (FAO). The aim of the present study was to investigate the role and underlying mechanisms of FAO in the protective effects of mild hypothermia. We used male mice to establish the experimental models as previously described. In brief, before exposure to in situ ischemia for 1 h and reperfusion for 6 h, mice received pretreatment with mild hypothermia for 2 h and etomoxir (inhibitor of FAO) or leptin (activator of FAO) for 1 h, respectively. Then, tissue and blood samples were collected to evaluate the liver injury, oxidative stress, and changes in hepatic FAO. We found that mild hypothermia significantly reduced the hepatic enzyme levels and the score of hepatic pathological injury, hepatocyte apoptosis, oxidative stress, and mitochondrial injury. In addition, the expression of the rate-limiting enzyme (CPT1a) of hepatic FAO was downregulated almost twofold by IR, while this inhibition could be significantly reversed by mild hypothermia. Experiments with leptin and etomoxir confirmed that activation of FAO could also reduce the hepatic enzyme levels and the score of hepatic pathological injury, hepatocyte apoptosis, oxidative stress, and mitochondrial injury induced by IR, which had the similar effects to mild hypothermia, while inhibition of FAO had negative effects. Furthermore, mild hypothermia and leptin could promote the phosphorylation of JAK2/STAT3 and upregulate the ratio of BCL-2/BAX to suppress hepatocyte apoptosis. Thus, we concluded that FAO played an important role in hepatic IR injury and mild hypothermia attenuated hepatic IR injury mainly via the regulation of JAK2/STAT3-CPT1a-dependent FAO.

Funder

Wuhan University

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3